

Past Papers Standard Grade Chemistry **Marking Scheme**

2003	ΚU		PS	
Credit	/30	%	/30	%
1	22+	73%	22+	73%
2	16+	53%	15+	50%
See General Paper	<16	<53%	<15	<50%

20	03 Stan	dard Grade	e Chem	istry C	redit N	Narking	Schem	e
Question	Answer	Chemistry Covered						
1a	A+C Both for 1 mark	In neutral atoms: number of protons = number of electrons						
1b	E	Mass number = number of protons + number of neutrons						
2a	A+E Both for 1 mark	fertilisers are s	fertilisers are soluble salts containing potassium, phosphorus and/or nitrogen					
2b	B+E Both for 1 mark	Ammonia is produced by heating an ammonium salt with a strong alkali e.g. sodium hydroxide						
За	F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	C+D	Answer	A	В	С	D	E	F
3b	Both for 1 mark	Name	ethene C-H:	butane Cullus	cyclopropane	e propene	cyclopentane	but-1-ene
		1 ormula		C4F110	C3F16		C5F110	C4F18
	A C	Name	ethene	ь butane	cyclopropane	e propene	cyclopentane	but-1-ene
30	1 mark each	Homologous Series	alkene	alkane	cycloalkane	alkene	cycloalkane	alkene
		Member of Series	1 st Member	4 th Member	1 st Member	2 nd Member	3 rd Member	3 rd Member
4	A , C 1 mark each	 ☑A sodium + water → sodium hydroxide + hydrogen ☑B no reaction: zinc is lower than magnesium in electrochemical series ☑C copper carbonate + hydrochloric acid → copper chloride + water + carbon dioxide ☑D lead nitrate + potassium iodide → potassium nitrate + lead iodide (precipitate) ☑E no reaction: silver is below hydrogen in the electrochemical series ☑E notassium hydroxide + nitric acid → notassium nitrate + water 						
5	C, E 1 mark each	 ☑A pH of an acid will increase when metal hydroxide (alkali) is added ☑B acid + metal hydroxide → salt + water ∴ no carbon dioxide produced ☑C barium sulphate produced in reaction is insoluble ∴ precipitate produced ☑D acid + metal hydroxide → salt + water ∴ no hydrogen produced ☑E sulphuric acid + barium hydroxide → barium sulphate + water 						
6	C, D 1 mark each	 A - salt water speeds up rusting/corrosion of iron B - only higher up metals can provide sacrificial protection. Tin is lower than iron. C - rusting/corrosion of iron produces electrons: Fe → Fe²⁺ + 2e⁻ then Fe²⁺ → Fe³⁺ + e⁻ D - Fe²⁺ ion produced by rusting and ferroxyl indicator turns blue in the presence of Fe²⁺ E - iron rusts slower when attached to the negative terminal due to cathodic protection 						
7	B, C 1 mark each	 A - Salts are made by neutralisation of an acid. The 1st name of the salt is from a base and the 2nd name of the salt is from an acid. No acids contain oxide ions to make iron (III) oxide B - Fe³⁺ ions in Fe₂O₃ are reduced to form iron atoms as Fe³⁺ ions gain electrons: Fe³⁺ + 3e⁻ → Fe C - Fe has valency = 3 in iron (III) oxide. Crossover rule gives formula Fe₂O₃. D - iron (III) oxide is ionic not covalent. Only covalent compounds from molecules. E - Metal oxides like iron (III) oxide react with acids to form salt and water. 						
8a	С	Answer	A	В	С	D	E	F
		pH of	alkaline	neutral	acidic	alkaline	neutral	acidic
8b	E	Sodium hydroxide is an ionic compound so it will be a solid at room temperature. Sodium hydroxide is a base so will form an alkaline solution.						
9a	A+D	Solid sodium chloride is a non-conductor						
	Both for 1 mark	Liquid sodium chloride is a conductor						
9b	С	Unly metal elements and the element carbon (graphite) conduct when solid. Elements are not compounds.						

Question	Answer	Chemistry Covered				
10a	Chemical which burns to give out energy	Fuels release energy (heat or kinetic) when burned				
	CH4 + 2O2					
10b(i)	Ļ	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$				
	CO2 + 2H2O					
10b(ii)	carbon monoxide	Incomplete combustion produces poisonous carbon monoxide gas and black				
100(1)	or carbon/soot	carbon soot due to the limited air supply				
10b	Н Н	HCI H2O NH3 CH4 H H CI O H H H H Linear Angular Trigonal Pyramidal Tetrahedral				
11a(i)	isotopes	Isotopes Same atomic number but different mass number Same number of protons but different number of neutrons				
11a(ii)	³⁵ Cl	More ³⁵ Cl isotope in sample as average 35.5 is closer to 35 than 37				
11b	Answer to include:	2 electrons form a shared pair between atoms. Atoms must be set distance apart for electrons to form a stable pair instead of remaining as two unpaired electrons				
	Particle Number	no. of protons = atomic number (bottom number)				
11c	proton 1/ neutron 18 electron 18	no. of neutrons = mass number - atomic number no. of electrons = number of protons - charge				
12a	line graph	1/2 mark - both labels with units 1/2 mark - both scales 1/2 mark - points plotted correctly 1/2 mark - points ioined				
12h	~30s (from graph)	find 40cm ³ on y-axis, find point on line and follow line down to				
120		x-axis to find value				
12c		no. of mol H ₂ = 0.5mol (in question) $7n \pm 2HCl = 7nCl_{2} \pm H_{2}$				
	32 750					
	52.7 Jy	0.5mol 0.5mol				
		mass = no. of mol × gfm = 0.5mol × 65.5g mol ⁻¹ = 32.75g				
13a	silver nitrate solution	grey solid at -ve electrode is silver: $Ag^+ + e^- \rightarrow Ag$				
13b	covalent	covalent compounds do not conduct when solid, liquid or in solution				
13c	hydrogen gas	R is sulphuric acid with: $2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$ at negative electrode.				
13d	distillation	ethanol is separated from water by distillation because of ethanol has a lower boiling point than water				
14a(i)	addition	Br2 molecule adds across the C=C double bond				
14a(ii)	Br Br H H—C—C—C—H H H H	Bromine on adjacent atoms of carbons which had C=C previously				

14b	СН3Н СН3Н СН3Н - С-С-С-С-С-С-С- Н Н Н Н Н Н	Draw propene into a 'H' shape, draw three and polymerise them into polymer CH_3H CH_3H CH_3H CH_3H CH_3H H H H H H H H $C=C+C=C+C=C$ $-C-C-C-C-C-C-C$ $-C-C-C-C-C-C-C$ H					
15a	6Cl⁻ + 6Na⁺	Spectator Ions appear on both sides of the arrow					
15b	filtration	calcium phosphate is insoluble (p8 of data booklet)					
		$gfm Ca_3(PO_4)_2 = (3x40) + (2x31) + (8x16) = 120 + 62 + 128 = 310g$					
15c	38.7%	$%Ca = \frac{\text{mass of } Ca}{gfm} \times 100 = \frac{120}{310} \times 100 = 38.7\%$					
16a(i)	From B(RIGHT) to A(LEFT)	At Electrode A: $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$					
	through the wires	Electrons are moving from B to A for Fe^{3+} ion to gain electrons					
16a(ii)	Reduction	Reduction is Gain of Electrons: Fe ³⁺ + e ⁻ Fe ²⁺					
1660	blue/black	Oxidation reaction at B: 21 ⁻ I ₂ + 2e ⁻					
16b(i)	colour appearing	Iodine produced turns blue/black in presence of starch					
16b(ii)	2I ⁻ → I ₂ + 2e ⁻	reverse of equation on p10 of data booklet					
47		enzymes are biological catalysts which catalyse chemical					
1/a	enzymes	reactions in the body					
	hydrolysis	Hydrolysis: Starch> alucose.					
17b		Water molecules are added across the breaks in the molecule as					
		starch is broken down into glucose					
17c	respiration	aerobic respiration: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$					
17d	fructoro	Carbohydrate glucose fructose maltose sucrose starch					
1/0	Tructose	Formula C6H12O6 C6H12O6 C12H22O11 C12H22O11 (C6H10O5)n					
18a	2,8,1	Magnesium atoms have an electron arrangement of 2,8,2. Mg⁺ ions have lost one electron so have electron arrangement of 2,8,1					
106(:)	Ionisation energy	2 nd Period: Li atomic number =3, Ne atomic number = 10					
100(1)	increases	General increase in ionisation energy from $3 \rightarrow 10$					
		Group Atomic Number of					
18b(ii)	Ionisation energy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	decreases	2 4 12 20					
	15t	alle which produce cleatricity often have two different					
19a(i)	2 nd clip on conpension	metals in them					
	iona connot move	metals in them.					
19a(ii)	through alogg	ions need to move through porous cardboard container to					
	through glass	tip is alagan to compan in the alagtrack smith					
19a(iii)	reading decreases	tin is closer to copper in the electrochemical series so					
19b	6.725g	voltage/current will be lower. $1 \mod CuCl_{2} = (1\times63.5) \pm (2\times35.5) = 134.5c$					
		$\frac{1}{100} \frac{1}{100} \frac{1}$					
		= 0.05 (items v 1 mol/l)					
		= 0.05 mmes X I ((0)/()					
		= 0.001101					
		$\frac{1}{1000} = 0.05 \text{ mol} \times 124.55 \text{ mol}^{-1}$					
		$= 0.05 \text{mol} \times 134.59 \text{mol}^{-1}$					
		= 6./25g					

